Pennington C of E Primary School

Maths Calculation Policy

Introduction

This document provides examples of progression through the various calculation methods to support problem solving using the four operations (addition, subtraction, multiplication and division). It is based on the Calculation methods detailed within the Big Maths - CLIC file, a tool which the school has adopted in the teaching of the areas of number and calculation in Mathematics. As such, the Big Maths - CLIC file folder provides additional detail to support in the learning and teaching of the methods detailed in this document.

Purpose of the document

The purpose of the policy is to ensure consistent practice throughout the school thereby improving the understanding and attainment of pupils, in line with the development of mental and written calculations in addition, subtraction, multiplication and division. Written methods should always follow and support understanding. They are not age-related but progressive. It is important that pupils' calculation methods develop through each stage and do not move on to the next one until they are ready.

How the document is organised

The remainder of the document is organised into four separate sections, one for each of the four operations. Each operation progresses from high level understanding methods to short column methods. Column methods run alongside the high understanding methods and both should be taught as part of the children's mathematical journey. More detail for each step can be found in the CLIC fold

Addition - High Understanding Methods

Stage 1:

Step: Using physical objects to count and add on.

Steps 2-5: Finding totals using objects.

Steps 6-8: Reading and understanding number sentences and solving using objects.

Stage 2:

Steps 9-12: Use of prepared number lines to 20. Using an empty number line to record counting on (less formal presentation, used as jottings).

Steps 13-19:

Use of 100 squares to add on in 1's, 10's and a combination of these.

Step 20: Use of 'partitioning' to add Ld + Id.

Stage 3:

Step 22: Use of partitioning to add 2d + Rd, starting with multiples of 10 .

Step 24: Use of partitioning to add any Rd + Rd.

1	2	3	4	5	6	7	8	9	10														
1	2		1	15		7					11	12	13	14	15	16	17	18	19	20			
:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	$\begin{array}{llllllllll}21 & 22 & 23 & 24 & 25 & 26 & 27 & 28 & 29 & 30\end{array}$ $\begin{array}{lllllllllllll}31 & 32 & 33 & 34 & 35 & 36 & 37 & 38 & 39 & 40\end{array}$ 41424344454647484950 $\begin{array}{llllllllll}51 & 52 & 53 & 54 & 55 & 56 & 57 & 58 & 59 & 60\end{array}$ 61626364656667686970 71727374757677787980	81	82	83	84	85	86	87	88	89	90
:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---											

Step 27: Use of partitioning to add Sd + Rd.

(520)

Step 28: Use of more formal layouts to add Sd + Sd.

Step 29: Use of more formal layouts to add Sd + Sd.

Step 29: Use of more formal layouts to add Sd + Sd, including where bridging is also required

Step 30: Adding decimals to 2dp, in the form of money (£2.34 + £3.45).
$241+328$

$$
\begin{aligned}
200+300 & =500 \\
40+20 & =60 \\
1+8 & =\frac{9}{569}
\end{aligned}
$$

$385+867$

385

 86712
140
1,100
1,252

Stage 4:

Steps 34-37: Addition of decimals; U . 10th +U . 10th using partitioning. Moving onto U.10th 100th + U.10th 100th

Addition of decimals; $U .10 t h+U .10$ th using more formal layc U.10th 100th + U.10th 100th

Step 38: Extending to include 4d and various combinations of Th, H, T, U
Step 39: Addition of several numbers.

Step 40: Adding numbers with varied digits before and after the decimal place without requiring bridging.

```
13.4 + 2.53
```


Stage 5:

Step 41: Adding numbers with mixed digits before and after the decimal place including those that require bridging. 8.67 + 19.8

Addition - Column Methods

Step	1 can	Example
10	I can solve ory 5d +5 d	$\begin{array}{r} 81686 \\ +\quad 66549 \\ \hline \end{array}$
9	I can use Column Addition for several numbers	$\begin{array}{r} 868 \\ 582 \\ +\quad 654 \\ \hline \end{array}$
8	I can solve any 4d + 4d	$\begin{array}{r} 8686 \\ +\quad 6549 \\ \hline \end{array}$
7	I can solve any 4d + 2d or 3d	$\begin{array}{r} 6549 \\ +\quad 686 \\ \hline \end{array}$
6	I can solve any 3d + 3d	$\begin{array}{r} 686 \\ +\quad 549 \\ \hline \end{array}$
5	I can solve a 3d + 3d	$\begin{array}{r} 636 \\ +\quad 242 \\ \hline \end{array}$
4	I can solve any 3d + 2d	$\begin{array}{r} 547 \\ +\quad 94 \\ \hline \end{array}$
3	I can solve a $3 \mathrm{~d}+2 \mathrm{~d}$	$\begin{array}{r} 442 \\ +\quad 36 \\ \hline \end{array}$
2	I can solve any 2d + 2d	$\begin{array}{r} 76 \\ +\quad 48 \\ \hline \end{array}$
1	I can solve a $2 \mathrm{~d}+2 \mathrm{~d}$	$\begin{array}{r} 36 \\ +\quad 42 \\ \hline \end{array}$

Step	Ican...	Example
14	I can add numbers with mixed amounts of decimal places	$\begin{aligned} & 8.689 \\ & +6.54 \\ & \hline \end{aligned}$
13	I can add numbers with 3dp	$\begin{array}{r} 8.686 \\ +\quad 6.549 \\ \hline \end{array}$
12.	I can add numbers with 2dp	$\begin{array}{r} 8.68 \\ +\quad 6.54 \\ \hline \end{array}$
11	I can add numbers with idp	$\begin{array}{r} 18.7 \\ +\quad 56.4 \\ \hline \end{array}$

Subtraction - High Understanding Methods

Stage 1 and 2 focuses on the notion of counting back, whereas from Stage 3 to 5 the emphasis switches to counting on and 'finding the gap'. At Stage 3, children should understand why this is possible (subtraction being the opposite of addition).

Stage 1:

Steps 1-6: Taking some objects away from a group. Progressing to counting how many are left (all with the use of physical objects).

Stage 2:

Steps 7-8: Arranging (then solving) a number sentence, physically setting out the objects.

$$
\begin{aligned}
& 6-4= \\
& \\
& \\
& \substack{\uparrow \\
\text { answer lept }}
\end{aligned} \quad 6-4=2
$$

Step 9: Counting back on a structured number line.

Steps 10-11: Using a structured number line or 100 square to subtract a one digit number from 20. $20-4=16$

Step 12: Using the empty number line, with jottings if required.

$$
16-7=
$$

Step 13: Use of a 100 square to find a multiple of 10 and

subtract 10.

> | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
| 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 |
| 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 |
| 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 |
| 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 |
| 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 |
| 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 |
| 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 |

Step 14: Use of a 100 square to find any two-digit number and subtract $10 . \quad 83-10=73$

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | $\begin{array}{llllllllllll}11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20\end{array}$ $\begin{array}{lllllllllll}21 & 22 & 23 & 24 & 25 & 26 & 27 & 28 & 29 & 30\end{array}$ $\begin{array}{llllllllllll}31 & 32 & 33 & 34 & 35 & 36 & 37 & 38 & 39 & 40\end{array}$ 41424344454647484950 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | 61626364656667686970 $717273 \times 757677787980$ 81828304858687888990 $\begin{array}{llllllllll}91 & 92 & 93 & 94 & 95 & 96 & 97 & 98 & 99 & 100\end{array}$

Step 15: Use of a 100 square to find a multiple of 10 and subtract a multiple of $10 . \quad 80-20=60$

Step 16: Use of a 100 square to find any two-digit number and subtract a multiple of 10 . $83-20=63$

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	4	65	66	67	68	69	70
71	72	73	7	75	76	77	78	79	80
81	82	83		85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

Step 17: Use an empty number line to subtract 2d-1d, not bridging tens.
Step 18: Use an empty number line to subtract Rd - Id, including bridging.

Stage 3:

With the focus moving to counting on, each progression follows the pattern:

- Record numbers at either end of the empty number line (counting on left to right)
- Making two jumps (multiple of 10 where counting onto < 100, multiple of 100 where counting onto < 1,000)

Step 22: Finding the difference to the next multiple of 10

Step 24: Jumping from a multiple of 10.

Step 25: Two jumps to solve 2d-2d.

$$
\begin{aligned}
& 84-73= \\
& 73+\square=84
\end{aligned}
$$

Step 28: Using 'jigsaw numbers'

Step 30: Solving 3d-2d.

Step 31: Solving 4d-2d.

$4568+65$

Step 32: Solving 3d-3d.

$228+75$

Stage 4:
Steps 33-34: Using money to solve subtractions $6.28-3.25$ involving U.10th $100^{\text {th }}$

$2.28+\ldots$
Step 35: Progressing to subtractions involving U.10th and U.10th $100^{\text {th }}$
$4.5-1.7$

$2.5+0.3=2.8$

Step 36: Any whole number subtraction

Stage 5:
Step 37: Subtraction of numbers with mixed digits before and after the decimal place

Subtraction - Column Methods

Step	I can...	Example
12	I can subtract numbers with mixed amounts of dp	-8.625
11	I can subtract numbers with 3dp	-4.8
10	I can subtract numbers with 2dp	-4.908

Step	I can...	Example
9	I can subtract numbers with 1dp	$\begin{array}{r} 8.6 \\ -\quad 4.9 \end{array}$
8	I can solve any 5d - 5d	$\begin{array}{r} 95686 \\ -\quad 54749 \\ \hline \end{array}$
7	I can solve any 4d-4d	$\begin{array}{r} 5686 \\ -\quad 4749 \\ \hline \end{array}$
6	I can solve any 4d-2d or 3d	$\begin{array}{r} 5686 \\ -\quad 749 \\ \hline \end{array}$
5	I can solve any 3d-3d	$\begin{array}{r} 985 \\ -\quad 596 \\ \hline \end{array}$
4	I can solve any 3d-2d	$\begin{array}{r} 931 \\ -\quad 82 \\ \hline \end{array}$
3	I can solve a 3d-2d	$\begin{array}{r} 986 \\ -\quad 42 \\ \hline \end{array}$
2	I can solve any 2d-2d	$\begin{array}{r} 76 \\ -\quad 48 \\ \hline \end{array}$
1	I can solve a 2d-2d	$\begin{array}{r} 96 \\ -\quad 42 \\ \hline \end{array}$

Multiplication - High Understanding Methods

Stage 1:

Steps 1-2: Use of physical objects to find totals. For example three lots of four cars.
Steps 3-4: Transferring to more abstract objects. For example, blocks / counters in groups.

Stage 2:

Steps 5-6: Drawing groups of dots. For example three lots of four dots.

Step 7: Repeated addition.

Step 8: Reading 3×4 as 3 'lots of' 4.

$$
4+4+4=12
$$

Stage 3:
Step 9: Using 2, 3, 4, 5 times table 'learn-its' to multiply id $\times 1 \mathrm{~d}$, as children should have improving instant recall of these facts by this stage.

Step 10: Introduction of 'smile multiplications'. Using id x 1 d 'learn its' combined with understanding of place value.

Step 11: Using 6, 7, 8, 9 times table 'learn-its' to multiply an) grow instant recall of these facts by this stage.

Step 12: Introduction of the 'grid method' to solve $2 \mathrm{~d} \times 1 \mathrm{~d}$ (where the id is in 2, 3, 4, 5 times table).

x	20	3
4	80	12

Stage 4:

Step 13: Use knowledge of 6, 7, 8, 9 times table 'learn-its' to solve any smile multiplication.

Step 14: Use of the grid method to solve any $2 \mathrm{~d} \times 1 \mathrm{~d}$.

Step 15: Use of the grid method to solve any $3 \mathrm{~d} \times 1 \mathrm{~d}$.
6×725

x	700	20	5
6	4200	120	30
	$+\begin{array}{r}4200 \\ \end{array}$	30	
4350			

62×48
Step 16: Use of the grid method to solve any $2 \mathrm{~d} \times 2 \mathrm{~d}$.
$+$
80

Refer to addition section for summing totals

Step 17: Solving $1 \mathrm{~d} \times \mathrm{U} .10$ th, using known facts and place value.

1. Recall tables fact

$$
6 \times 8=48
$$

$$
6 \times 0.8=4.8
$$

2. Make answer $10 x$ smaller

Step 18: Introduction of 'coin grids' and the 'coin method' to solve 2d $\times 2 d$.
62×48

Stage 5:
Step 19: Solving id \times U.10th 100th

1. Recall tables fact
2. Make answer $100 \times$ smaller

Step 20: Use of the grid method to solve any $3 \mathrm{~d} \times 2 \mathrm{~d}$.

- Extension of coin grids and the coin method to solve 3. $\times 2 \mathrm{~d}$.
- Refining coin grids, so only those values required to solve the problem are found.

Refer to addition section for summing totals

Multiplication - Column Methods

Step	I can...	Example
11	I can solve any $1 \mathrm{~d} .2 \mathrm{dp} \times 2 \mathrm{~d}$	$\begin{array}{r} 5.24 \\ \times \quad 26 \\ \hline \end{array}$
10	I can solve any 1d. $1 \mathrm{dp} \times 2 \mathrm{~d}$	$\begin{aligned} & 5.2 \\ & \times \quad 36 \\ & \hline \end{aligned}$
9	I can solve any 1d. $2 \mathrm{dp} \times 1 \mathrm{~d}$	$\begin{array}{r} 5.24 \\ \times \quad 4 \\ \hline \end{array}$
8	I can solve any 1d.1dp \times 1d	$\begin{array}{r} 5.6 \\ \times \quad 4 \\ \hline \end{array}$
7	I can solve any $4 \mathrm{~d} \times 2 \mathrm{~d}$	$\begin{array}{r} 3123 \\ \times \quad 22 \\ \hline \end{array}$
6	I can solve any $4 \mathrm{~d} \times 1 \mathrm{ld}$	$\begin{array}{r} 8152 \\ \times \quad 6 \\ \hline \end{array}$
5	I can solve any $3 \mathrm{~d} \times 2 \mathrm{~d}$	$\begin{array}{r} 485 \\ \times \quad 16 \\ \hline \end{array}$
4	I can solve any $2 \mathrm{~d} \times 2 \mathrm{~d}$	$\begin{array}{r} 85 \\ \times \quad 16 \\ \hline \end{array}$
3	I can solve any 3d $\times 1 \mathrm{~d}$	$\begin{array}{r} 385 \\ \times \quad 6 \\ \hline \end{array}$
2	I can solve any $2 \mathrm{~d} \times 1 \mathrm{~d}$	$\begin{array}{r} 85 \\ \times \quad 6 \\ \hline \end{array}$
1	I can solve a $2 \mathrm{~d} \times 1 \mathrm{ld}$	$\begin{array}{r} 35 \\ \times \quad 5 \\ \hline \end{array}$

Division－High Understanding Methods

Stage 1：

Steps 1－2：Sharing out objects equally／fairly．Asking，＂How many will each person have？＂

莫总关

Steps 3－4：Sharing between two．Halving even numbers of objects．

Stage 2：

Step 5：Sharing 6，9，12， 15 objects between 3.

Step 6：Sharing 6，9，12， 15 objects into 3.
－Introducing the \div symbol．
 sharng．

Steps 7－8：Sharing 8，12，16， 20 between and into 4.

Step 9：Solving $\div 2, \div 3, \div 4$ division problems．e．g．
e．g．
$10 \div 2=, 6 \div 3=12 \div 4=$

Steps 10－12：Making groups of 2,5 or 10 and counting．

Step 14：Physically solving a number sentence using objects and counting．

Step 15：Moving onto remainders．
$17 \div \mathbf{3}$ is $\mathbf{1 7}$ counters in $\mathbf{5}$ groups of $\mathbf{3}$ with 2 left over

Stage 3:

Solving problems involving $2 \mathrm{~d} \div 1 \mathrm{~d}$.
Step 16: Use of multiplication 'learn its' for 2, 3, 4, 5 and 10 times tables to find division facts through 'fact families'.

Step 17: Extending use of multiplication 'learn its' for 2, 3, 4,5 and 10 times tables to find division facts and remainders.

Step 18: Combining two or more 2, 3, 4,5,10×'learn its' to solve division problems using 'division grids'.

Step 19: Extending combining two or more 2, 3, 4, 5, $10 \times$ 'learn its' to solve division problems involving remainders.

Stage 4:
Solving problems involving $2 \mathrm{~d} \div 1 \mathrm{~d}$, and $3 \mathrm{~d} \div 1 \mathrm{~d}$.
Step 22: Combining two or more 9, 7, 8, $9 \times$ 'learn its' to solve division problems using 'division grids'.

Step 23: Extending combining two or more 9, 7, 8, $9 \times$
Step 23: Extending combining two or more $9,7,8,9 x$
'learn its' to solve division problems involving remainders.

$$
\begin{aligned}
& 117 \div 9=13 \\
& \times 9 \mid 117 \\
& \hline 10 \\
& +\frac{3}{13}
\end{aligned}
$$

$$
120 \div 9=13+3
$$

$\times 9$	120	
10	90	$\rightarrow 30$
+3	27	$\rightarrow 3$
13	-3	

Step 24: Combining knowledge of smile multiplications (and their fact families) to solve division problems with greater efficiency

Step 25: Combining knowledge of smile multiplications (and their fact families) to solve division problems with greater efficiency, including those that give rise to remainders.

Step 27: Extending to solve $3 \mathrm{~d} \div 1 \mathrm{~d}$, including those that give rise to remainders.

Stage 5:
Step 28: Using coin grids to support 3d $\div 2 d$. Combining two or more coin facts to solve division problems.

Step 29: Extending to those that give rise to remainders.

Step 32: Solving decimal division problems, using 'learn its' and understanding of place value.

$$
2.4 \div 8=0.3
$$

$$
24 \div 8=3
$$

Step 33:

$$
\begin{array}{rl}
42.4 \div 8=5.3 \\
\times 8 & 42.4
\end{array}
$$

Division - Column Method

Step	I can...	Example
10	I can solve division with decimal places in the answer	$2 2 \longdiv { 6 7 2 1 }$
9	I can solve any $4 d \div 2 d$ And show remainder as a fraction	$2 3 \longdiv { 6 4 5 2 }$
8	I can solve any $3 \mathrm{~d} \div 2 \mathrm{~d}$	$2 3 \longdiv { 6 4 5 }$
7	I can solve any $4 d \div 1 d$ And interpret context of remainder	$6 \longdiv { 4 0 0 0 }$
6	I can solve any $2 \mathrm{~d} \div 1 \mathrm{~d}$ (and $3 \mathrm{~d} \div 1 \mathrm{~d}$) With remainders	$6 \longdiv { 5 0 3 }$
5	I can solve a $4 \mathrm{~d} \div 1 \mathrm{~d}$ (using any table) No remainders in answer	$9 \longdiv { 3 6 5 4 }$
4	I can solve a $3 \mathrm{~d} \div 1 \mathrm{~d}$ (using any table) No remainders in answer	$7 \longdiv { 2 9 4 }$
3	I can solve a $2 \mathrm{~d} \div 1 \mathrm{~d}$ (using any table) No remainders in answer	$6 \longdiv { 8 4 }$
2	I can solve a $2 \mathrm{~d} \div 1 \mathrm{~d}$ (using $\times 2,3,4,5$) No remainders in answer	$3 \longdiv { 8 1 }$
1	I can solve a $2 \mathrm{~d} \div 1 \mathrm{~d}$ (using $\times 2,3,4,5$) No remainders inside question	$3 \longdiv { 6 9 }$

Date Written: November 2020
Date to be reviewed: November 2022
Maths Subject Leader: Jade Wren
Maths Governor: Lis Fenwick

